Основное уравнение динамики вращательного движения момент импульса. Динамика вращательного движения твердого тела основное уравнение динамики




Динамика вращательного движения твердого тела. Основное уравнение динамики вращательного движения. Момент инерции твердого тела относительно оси. Теорема Штейнера. Момент импульса. Момент силы. Закон сохранения и изменения момента импульса.

На прошлом занятии разобрали импульс и энергию. Рассмотрим величину момент импульса - характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью проходит вращение. Рассмотрим частицу А. r – радиусвектор, характеризующий положение относительно некоторой точки O, выбранной системы отсчёта. P-импульс в этой системе. Векторная величина L – момент импульса частицы А относительно точки О: Модуль вектора L: где α – угол между r и p, l=r sin α плечо вектора p относительно точки О.

Рассмотрим изменение вектора L со временем: = т. к. dr/dt =v, v направлен так же, как и p , т. к. dp/dt=F –равнодействующая всех сил. Тогда: Момент силы: М= Модуль момента силы: где l – плечо вектора F относительно точки O Уравнение моментов: производная по времени от момента импульса L частицы относительно некоторой точки О равна моменту M равнодействующей силы F относительно той же точки О: Если M = 0, то L=const – если момент равнодействующей силы равен 0 в течении интересующего промежутка времени, то импульс частицы остаётся постоянным в течении этого времени.

Уравнение моментов позволяет: Найти момент силы M относительно точки O в любой момент времени t , если известна зависимость от времени момента импульса L(t) частицы, относительно той же точки; Определить припращение момента импульса частицы относительно точки O за любой промежуток времени, если известна зависимость от времени момента сил M(t), действующего на эту частицу (относительно той же точки О). Используем уравнение моментов, и запишем элементарное приращение вектора L: Тогда, проинтегрировав выражение, найдём приращение L за конечный промежуток времени t: правая часть – импульс момента силы. Приращение момента импульса частицы за любой промежуток времени равно импульсу момента силы за это же время.

Момент импульса и момент силы относительно оси Возьмём ось z. Выберем точку О. L - момент импульса частицы А относительно точки, M- момент силы. Моментом импульса и моментом силы относительно оси z называют проекцию на эту ось векторов L и M. Обозначают Lz и Mz - они не зависят от точки выбора О. Производная по времени от момента импульса частицы относительно оси z равна моменту силы относительно этой оси. В частности: Mz=0 Lz=0. Если момент силы относительно некоторой подвижной оси z равен нулю, то момент импульса частицы относительно этой оси остаётся постоянным, при этом сам вектор L может меняться.

Закон сохранения моменте импульса Выберем произвольную систему частиц. Момент импульса данной системы будет векторная сумма моментов импульсов её отдельных частиц: Векторы определены относительно одной и той же оси. Момент импульса величина аддитивная: момент импульса системы равен сумме моментов импульсов её отдельных частей независимо от того, взаимодействуют они между собой или нет. Найдём изменение момента импульса: - суммарный момент всех внутренних сил относительно точки О. ; - суммарный момент всех внешних сил относительно точки О. Производная момента импульса системы по времени равна суммарному моменту всех внешних сил! (используя 3 закон Ньютона):

Момент импульса системы может изменяться под действием только суммарного момента всех внешних сил Закон сохранения импульса: момент импульса замкнутой системы частиц остаётся постоянным, т. е. не меняется со временем. : Справедливо для момента импульса, взятого относительно любой точки инерциальной системы отсчёта. Внутри системы изменения могут быть, но приращение момента импульса одной части системы равно убыли момента импульса другой её части. Закон сохранения момента импульса – не является следствием 3 -го закона Ньютона, а представляет самостоятельный общий принцип; один из фундаментальных законов природы. Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

Динамика твёрдого тела Два основных вида движения твёрдого тела: Поступательное: все точки тела получают за один и тот же промежуток времени равные по величине и направлению перемещения. Задать движение одной точки Вращательное: все точки твёрдого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Задать ось вращения и угловую скорость в каждый момент времени Любое движение твёрдого тела может быть представлена как сумма двух этих движений!

Произвольное перемещение твёрдого тела из положения 1 в положение 2 можно представить как сумму двух перемещенийпоступательного перемещения из положения 1 в положения 1’ или 1’’ и поворота вокруг оси О’ или оси О’’. Элементарное перемещение ds: - «поступательного» - «вращательного» Скорость точки: - одинаковая для всех точек тела скорость поступательного движения - различная для разных точек тела скорость, связанная с вращением тела

Пусть система отсчёта неподвижна. Тогда движение можно рассмотреть как вращательное движение с угловой скоростью w в системе отсчёта, движущейся относительно неподвижной системы поступательно со скоростью v 0. Линейная скорость v’, обусловленная вращением твёрдого тела: Скорость точки при сложном движении: Существуют точки, которые при векторном перемножении векторов r и w дают вектор v 0. Эти точки лежат на одной прямой и образуют мгновенную ось вращения.

Движение твёрдого тела в общем случае определяется двумя векторными уравнениями: Уравнение движения центра масс: Уравнение моментов: Законы действующих внешних сил, точки их приложения и начальные условия скорость и положение каждой точки твердого тела в любой момент времени. Точки приложения внешних сил можно переносить вдоль направления действия сил. Равнодействующая сила- сила, сила которая равна результирующей сил F, действующих на твёрдое тело, и создаёт момент, равный суммарному моменту M всех внешних сил. Случай поля тяжести: равнодействующая сил тяжести проходит через центр масс. Сила, действующая на частицу: Суммарный момент сил тяжести относительно любой точки:

Условия равновесия твердого тела: тело будет оставаться в состоянии покоя, если нет причин, вызывающих его движение. По двум основным уравнениям движения тела, для это необходимо два условия: Результирующая внешних сил равна нулю: Сумма моментов всех внешних сил, действующих на тело относительно любой точки должен быть равен нулю: Если система неинерциальная, то кроме внешних сил необходимо учитывать силы инерции (силы, обусловленные ускоренным движением неинерциальной системы отсчета относительно инерциальной системы отсчета). Три случая движения твёрдого тела: Вращение вокруг неподвижной оси Плоское движение Вращение вокруг свободных осей

Вращение вокруг неподвижной оси Момент импульса твёрдого тела относительно оси вращения ОО’: где mi и pi- масса и расстояние от оси вращения i-й частицы твёрдого тела, wz –его угловая скорость. Введём обозначение: где I – момент инерции твёрдого тела относительно оси OO’: Момент инерции тела находится как: где dm и dv – масса и объём элемента тела, находящегося на расстоянии r от интересующей нас оси z; ρ- плотность тела в данной точке.

Моменты инерции однородных твёрдых тел, относительно оси проходящей через центр масс: Теорема Штейнера: момент инерции I относительно произвольной оси z равен моменту инерции Ic относительно оси Ic, параллельной данной и проходящей через центр масс C тела, плюс произведение массы m тела на квадрат расстояния a между осями:

Уравнение динамики вращения твёрдого тела: где Mz – суммарный момент всех внешних сил относительно оси вращения. Момент инерции I определяет инерционные свойства твёрдого тела при вращении: при одном и том же значении момента сил Mz тело с большим моментом инерции приобретает меньшее угловое ускорения βz. Mz включает и моменты сил инерции. Кинетическая энергия вращающегося твёрдого тела (ось вращения неподвижна): пусть скорость частицы вращающегося твёрдого тела – Тогда: где I – момент инерции относительно оси вращения, w – его угловая скорость. Работа внешних сил при вращении твердого тела вокруг неподвижной оси определяется действием момента Mz этих сил относительно данной оси.

Плоское движение твёрдого тела При плоском движении центра масс твердого тела движется в определённой плоскости, неподвижной в данной системе отсчёта К, а вектор его угловой скорости w перпендикулярен этой плоскости. Движение описывают два уравнения: где m – масса тела, F-результирующая всех внешних сил, Ic и Mcz- момент инерции и суммарный момент всех внешних сил- оба относительно оси, проходящей через центр тела. Кинетическая энергия твёрдого тела при плоском движении складывается из энергии вращения в системе вокруг оси, проходящей центр масс, энергии связанной с движением центра масс: где Ic –момент инерции относительно оси вращения (через ЦМ), w – угловая скорость тела, m – его масса, Vc – скорость центра масс тела системе отсчёта K.

Вращение вокруг свободных осей Ось вращения, направление которой в пространстве остаётся неизменным без действия на неё каких либо сил извне, называют свободной осью вращения тела. Главные оси тела – три взаимно перпендикулярные оси, проходящие через его центр масс, которые могут служить свободными осями. Для удержания оси вращения в неизменном направлении к ней необходимо приложить момент M некоторых внешних сил F: Если угол равен 90 градусам, то L совпадает по направлению с w, т. е. М=0!- направление оси вращения будет оставаться неизменным без внешнего воздействия При вращении тела вокруг любой главной оси вектор момента импульса L совпадает по направлению с угловой скоростью w: где I -момент инерции тела относительно данной оси.

Рассмотрим вначале материальную точку А массой m, движущуюся по окружности радиусом г (рис. 1.16). Пусть на нее действует постоянная сила F, направленная по касательной к окружности. Согласно второму закону Ньютона, эта сила вызывает тангенциальное ускорение илиF = ma τ .

Используя соотношение a τ = βr , получаем F = m βr.

Умножим обе части написанного выше равенства на r.

Fr = m βr 2 . (3.13)

Левая часть выражения (3.13) является моментом силы: М= Fr. Правая часть представляет собой произведение углового ускорения β на момент инерции материальной точки А: J= m r 2 .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции (основное уравнение динамики вращательного движения материальной точки ):

М = β J или
(3.14)

При постоянном моменте вращающей силы угловое ускорение будет величиной постоянной и его можно выразить через разность угловых скоростей:

(3.15)

Тогда основное уравнение динамики вращательного движения можно записать в виде

или
(3.16)

[
-момент импульса (или момент количества движения), МΔt - импульс момента сил (или импульс вращающего момента)].

Основное уравнение динамики вращательного движения можно записать в виде

(3.17)

§ 3.4 Закон сохранения момента импульса

Рассмотрим частый случай вращательного движения, когда суммарный момент внешних сил равен нулю. При вращательном движении тела каждая его частица движется с линейной скоростью υ = ωr, .

Момент импульса вращающегося тела равен сумме моментов

импульсов отдельных его частиц :

(3.18)

Изменение момента импульса равно импульсу момента сил:

dL=d(Jω)=Jdω=Mdt (3.19)

Если суммарный момент всех внешних сил, действующих на систему тела относительно произвольной неподвижной оси, равен нулю, т.е. М=0, то dL и векторная сумма моментов импульсов тел системы не изменяется с течением времени.

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной (закон сохранения момента импульса ):

d(Jω)=0 Jω=const (3.20)

Согласно закону сохранения момента импульса можно записать

J 1 ω 1 = J 2 ω 2 (3.21)

где J 1 и ω 1 - момент инерции и угловая скорость в начальный момент времени, а и J 2 и ω 2 – в момент времени t.

Из закона сохранения момента импульса следует, что при М=0 в процессе вращения системы вокруг оси любое изменение расстояния от тел до оси вращения должно сопровождаться изменением скорости их обращения вокруг этой оси. С увеличением расстояния скорость вращения уменьшается, с уменьшением – возрастает. Например, гимнаст, совершающий сальто, чтобы успеть сделать в воздухе несколько оборотов, во время прыжка свёртывается клубком. Балерина или фигуристка, кружась в пируэте, разводит руки если хочет замедлить вращение, и, наоборот, прижимает их к телу, когда старается вращаться как можно быстрее.

Моментом силы F относительно неподвиж­ной точки О называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [ rF ].

Здесь М - псевдовектор, его направление совпадает с направлением поступательно­го движения правого винта при его враще­нии от г к F .

Модуль момента силы

M = Frsin = Fl , (18.1)

где - угол между г и F ; rsin = l - кратчайшее расстояние между линией дей­ствия силы и точкой О - плечо силы.

Моментом силы относительно непод­вижной оси z называется скалярная вели­чина М z , равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2 (рис.26). Значение момента М z не зависит от выбора положения точки О на оси z .

Уравнение (18.3) представляет собой уравнение динамики вращательного дви­жения твердого тела относительно непод­вижной оси.

14. Центр масс системы материальных точек.

В механике Галилея - Ньютона из-за независимости массы от скорости импульс системы может быть выражен через ско­рость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе;

- масса системы.

Скорость центра масс

Учитывая, что p i = m i v i , а

есть импульс р системы, можно написать

p = m v c , (9.2)

т. е. импульс системы равен произведе­нию массы системы на скорость ее цент­ра масс.

Подставив выражение (9.2) в уравне­ние (9.1), получим

mdv c / dt = F 1 + F 2 +...+ F n , (9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Выражение (9.3) представляет собой закон движения центра масс.

В соответствии с (9.2) из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным

2)Траектория движения. Пройденный путь. Кинематический закон движения.

Траекто­рия движения материальной точки - ли­ния, описываемая этой точкой в простран­стве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис.2). Отсчет времени начнем с момен­та, когда точка находилась в положении А. Длина участка траектории АВ, прой­денного материальной точкой с момента начала отсчета времени, называется дли­ной пути As и является скалярной фун­кцией времени: s = s (t ). Вектор r = r - r 0 , проведенный из начального положе­ния движущейся точки в положение ее в. данный момент времени (приращение радиуса-вектора точки за рассматривае­мый промежуток времени), называется пе­ремещением.

При прямолинейном движении вектор перемещения совпадает с соответствую­щим участком траектории и модуль пе­ремещения | r | равен пройденному пу­ти s .

Вопросы к экзамену по физике (I семестр)

1. Движение. Виды движений. Описание движения. Система отсчета.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

3. Скорость. Средняя скорость. Проекции скорости.

4. Ускорение. Понятие нормального и тангенциального ускорений.

5. Вращательное движение. Угловая скорость и угловое ускорение.

6. Центростремительное ускорение.

7. Инерциальные системы отсчета. Первый закон Ньютона.

8. Сила. Второй закон Ньютона.

9. Третий закон Ньютона.

10.Виды взаимодействий. Частицы-переносчики взаимодействий.

11.Полевая концепция взаимодействий.

12. Гравитационные силы. Сила тяжести. Вес тела.

13. Силы трения и упругие силы.

14. Центр масс системы материальных точек.

15. Закон сохранения импульса.

16. Момент силы относительно точки и оси.

17. Момент инерции твердого тела. Теорема Штейнера.

18. Основное уравнение динамики вращательного движения.

19. Момент импульса. Закон сохранения момента импульса.

20. Работа. Вычисление работы. Работа упругих сил.

21. Мощность. Вычисление мощности.

22. Потенциальное поле сил. Силы консервативные и неконсервативные.

23. Работа консервативных сил.

24. Энергия. Виды энергии.

25. Кинетическая энергия тела.

26. Потенциальная энергия тела.

27. Полная механическая энергия системы тел.

28. Связь между потенциальной энергией и силой.

29. Условия равновесия механической системы.

30. Соударение тел. Виды соударений.

31. Законы сохранения для различных видов соударений.

32. Линии и трубки тока. Неразрывность струи. 3 3. Уравнение Бернулли.

34. Силы внутреннего трения. Вязкость.

35. Колебательное движение. Виды колебаний.

36. Гармонические колебания. Определение, уравнение, примеры.

37.Автоколебания. Определение, примеры.

38. Вынужденные колебания. Определение, примеры. Резонанс.

39. Внутренняя энергия системы.

40. Первое начало термодинамики. Работа, совершаемая телом при изменениях объема.

41. Температура. Уравнение состояния идеального газа.

42. Внутренняя энергия и теплоемкость идеального газа.

43. Уравнение адиабаты идеального газа.

44. Политропические процессы.

45. Ван-дер-ваальсовский газ.

46. Давление газа на стенку. Средняя энергия молекул.

47.Распределение Максвелла.

48. Распределение Больцмана.

Напомним, что элементарной работой dA силы F называется скалярное произведение силы F на бесконечно малое перемещение dl :

где  - угол между направлением силы и направлением перемещения.

Отметим, что нормальная составляющая силы F n (в отличие от тангенциальной F τ ) и сила реакции опоры N работы не совершают, так как они перпендикулярны направлению перемещения.

Элемент dl=rd при небольших углах поворота d (r – радиус-вектор элемента тела). Тогда работа этой силы записывается следующим образом:

. (19)

Выражение Fr cos является моментом силы (произведение силы F на плечо p=r cos):

(20)

Тогда работа равна

. (21)

Эта работа затрачивается на изменение кинетической энергии вращения:

. (22)

Если I=const, то после дифференцирования правой части получим:

или, так как

, (23)

где
- угловое ускорение.

Выражение (23) является уравнением динамики вращательного движения твердого тела относительно неподвижной оси, которое лучше с точки зрения причинно-следственных связей представить как:

. (24)

Угловое ускорение тела определяется алгебраической суммой моментов внешних сил относительно оси вращения деленной на момент инерции тела относительно этой оси.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (см. таблицу 1):

Таблица 1

Поступательное движение

Вращательное движение

Момент инерции I

Скорость

Угловая скорость

Ускорение

Угловое ускорение

Сила

Момент силы
или

Основное уравнение динамики:

Основное уравнение динамики:

Работа

Работа

Кинетическая энергия

Кинетическая энергия

Динамика поступательного движения твердого тела полностью определяется силой и массой как мерой их инертности. При вращательном движении твердого тела динамика движения определяется не силой как таковой, а ее моментом, инертность не массой, а ее распределением относительно оси вращения. Тело не приобретает углового ускорения, если сила приложена, но ее момент будет равен нулю.

Методика выполнения работы

Принципиальная схема лабораторной установки представлена на рис.6. Она состоит из диска массой m d , закрепленных на нем четырех стержней массами m 2 , и четырех грузов массами m 1 , расположенных симметрично на стержнях. На диск намотана нить, к которой подвешен груз массой m.

Согласно второму закону Ньютона составим уравнение поступательного движения груза m без учета сил трения:


(25)

или в скалярном виде, т.е. в проекциях на направление движения:

. (26)

, (27)

где T – сила натяжения нити. Согласно основному уравнению динамики вращательного движения (24), момент силы T, под действием которой система тел m d , m 1, m 2 совершает вращательное движение, равен произведению момента инерции I этой системы на ее угловое ускорение :

или
, (28)

где R – плечо этой силы равное радиусу диска.

Выразим силу натяжения нити из (28):

(29)

и приравняем правые части (27) и (29):

. (30)

Линейное ускорение связано с угловым следующим соотношением a=R, следовательно:

. (31)

Откуда ускорение груза m без учета сил трения в блоке равно:

. (32)

Рассмотрим динамику движения системы с учетом сил трения, которые действуют в системе. Они возникают между стержнем, на котором закреплен диск и неподвижной частью установки (внутри подшипников), а также между подвижной частью установки и воздухом. Все эти силы трения мы будем учитывать с помощью момента сил трения.

С учетом момента сил трения уравнение динамики вращения записывается следующим образом:

, (33)

где a’ – линейное ускорение при действии сил трения, M тр – момент сил трения.

Вычитая уравнение (33) из уравнения (28), получим:

,

. (34)

Ускорение без учета силы трения (а) можно рассчитать по формуле (32). Ускорение гирьки с учетом сил трения можно рассчитать из формулы для равноускоренного движения, измерив пройденный путь S и время t:

. (35)

Зная значения ускорений (а и а’), по формуле (34) можно определить момент сил трения. Для расчетов необходимо знать величину момента инерции системы вращающихся тел, который будет равен сумме моментов инерции диска, стержней и грузов.

Момент инерции диска согласно (14) равен:

. (36)

Момент инерции каждого из стержней (рис.6) относительно оси О согласно (16) и теореме Штейнера равен:

где a c =l/2+R, R – расстояние от центра масс стержня до оси вращения О; l – длина стержня; I oc – его момент инерции относительно оси, проходящей через центр масс.

Аналогично рассчитываются моменты инерции грузов:

, (38)

где h – расстояние от центра масс груза до оси вращения О; d – длина груза; I 0 r – момент инерции груза относительно оси, проходящей через его центр масс. Сложив моменты инерции всех тел, получим формулу для вычисления момента инерции всей системы.

Уравнение (3) M = dL /dt называется основным уравнением динамики вращательного движения: скорость изменения момента импульса тела, вращающегося вокруг неподвижной точки, равна результирующему моменту относительно этой точки всех внешних сил, приложенных к телу.

Из уравнений (1) и (3) следует

М = d(I ω) /dt = I dω /dt = I e,

e = М/ I .

Угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

Теория лабораторной работы

Теоретические сведения

Основное уравнение динамики вращательного движения абсолютно твердого тела вокруг заданной неподвижной оси имеет вид .

Уравнение связывает угловое ускорение тела e с моментом М всех сил, действующих на тело, относительно оси вращения. Величина I зависит от форм, размеров тела, выбора оси вращения и является моментом инерции тела относительно заданной оси.

Сравнивая это уравнение с основным уравнением динамики поступательного движения , видим, что момент инерции I играет для вращательного движения ту же роль, что масса для поступательного движения. А именно, момент инерции I характеризует инертность тела при вращательном движении. Момент инерции может быть вычислен, если известно распределение массы относительно заданной оси. Так, момент инерции тела точечной массы, отстоящей от оси вращения на расстояние r , равен I = mr 2 .

Момент инерции системы конечного числа материальных точек, вращающихся относительно заданной оси, вычисляется по формуле

.

Формулу для сплошного тела получим, мысленно разбив тело на бесконечно малые элементы с массой dm и заменив конечную сумму интегралом:

.

Момент инерции тела можно найти также и экспериментально. Один из способов экспериментального определения момента инерции применяется в настоящей работе.

Описание установки

O /
h
P
M
S
O
Рис. 7
В данной работе определяется момент инерции системы, состоящей из вала ОО / , на котором закреплены маховик М и шкив S
(рис. 15).

К шкиву прикрепляется нить с гирей Р, масса которой m известна. При наматывании нити на шкив гиря поднимается на высоту h над опорой и приобретает потенциальную
энергию mgh .

Если систему предоставить самой себе, то гиря будет ускоренно опускаться, а вал вместе с маховиком и шкивом – ускоренно вращаться. Потенциальная энергия гири будет при этом переходить в кинетическую энергию вращательного движения маховика, вала и шкива, а также в кинетическую энергию поступательного движения гири. Кроме того, часть потенциальной энергии будет затрачена на увеличение внутренней энергии теплового движения молекул трущихся тел за счет работы сил трения в опорных подшипниках вала.



Применим к данному случаю закон сохранения энергии:

(5)

где mgh – потенциальная энергия гири, поднятой на высоту h ;

– кинетическая энергия гири в момент, непосредственно предшествующий ее остановке; – кинетическая энергия вращательного движения маховика, вала и шкива в тот же момент времени (I – момент инерции этой системы относительно оси вращения, w – угловая скорость); W Т – часть потенциальной энергии, затраченной на увеличение внутренней энергии в результате работы сил трения за время падения груза.

Если приблизительно считать, что сила трения в подшипниках постоянна, то движение системы будет равноускоренным. Тогда скорость v , достигаемая к моменту соскальзывания нити со шкива, и высота падения h могут быть найдены из известных соотношений для равноускоренного движения v = at и , где а – ускорение гири; t – время ее падения. Отсюда

. (6)

Зная скорость гири v в момент соскальзывания нити со шкива и радиус шкива r , нетрудно найти соответствующую угловую скорость вала

. (7)

Определим работу сил трения в подшипниках. Поскольку сила трения принята не зависящей от скорости, то ее работа будет пропорциональна числу оборотов вала n 1: W Т = bn 1 .

Коэффициент пропорциональности b может быть найден опытным путем. Нить закреплена на шкиве при помощи петельки, соскальзывающей со шкива в момент падения гири на пол. После падения гири маховик по инерции будет продолжать вращаться.

Вследствие тормозящего действия сил трения это вращение будет замедленным, и после некоторого числа оборотов n 2 , отсчитываемых от момента падения гири, маховик остановится. Приравнивая кинетическую энергию маховика в момент падения гири на пол к работе сил трения, совершенной за время замедленного вращения, получим . Отсюда и, следовательно,