Как решать окислительно-восстановительные реакции? Окислительно-восстановительные реакции (ОВР): примеры Окислительно восстановительные реакции 9 химия.




Задачник по общей и неорганической химии

2.2. Окислительно-восстановительные реакции

Смотрите задания >>>

Теоретическая часть

К окислительно-восстановительным реакциям относятся химические реакции, которые сопровождаются изменением степеней окисления элементов. В уравнениях таких реакций подбор коэффициентов проводят составлением электронного баланса . Метод подбора коэффициентов с помощью электронного баланса складывается из следующих этапов:

а) записывают формулы реагентов и продуктов, а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно:

MnCO 3 + KClO 3 ® MnO 2 + KCl + CO 2

Cl V ¼ = Cl - I

Mn II ¼ = Mn IV

б) составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции :

полуреакция восстановления Cl V + 6 e - = Cl - I

полуреакция окисления Mn II - 2 e - = Mn IV

в) подбирают дополнительные множители для уравнения полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых электронов в полуреакциях восстановления делают равным числу отданных электронов в полуреакции окисления:

Cl V + 6 e - = Cl - I 1

Mn II - 2 e - = Mn IV 3

г) проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается):

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + CO 2

д ) уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнение химической реакции:

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + 3 CO 2

Пример 3 . Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe 2 O 3 + CO ® Fe + CO 2

Решение

Fe 2 O 3 + 3 CO = 2 Fe +3 CO 2

Fe III + 3 e - = Fe 0 2

C II - 2 e - = C IV 3

При одновременном окислении (или восстановлении) атомов двух элементов одного вещества расчет ведут на одну формульную единицу этого вещества.

Пример 4. Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe(S) 2 + O 2 = Fe 2 O 3 + SO 2

Решение

4 Fe(S) 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2

Fe II - e - = Fe III

- 11 e - 4

2S - I - 10 e - = 2S IV

O 2 0 + 4 e - = 2O - II + 4 e - 11

В примерах 3 и 4 функции окислителя и восстановителя разделены между разными веществами, Fe 2 O 3 и O 2 - окислители, СО и Fe (S ) 2 - восстановители ; такие реакции относят к межмолекулярным окислительно-восстановительным реакциям.

В случае внутримолекулярного окисления-восстановления, когда в одном и том же веществе атомы одного элемента окисляются, а атомы другого элемента восстанавливаются, расчет ведут на одну формульную единицу вещества.

Пример 5. Подберите коэффициенты в уравнении реакции окисления-восстановления

(NH 4) 2 CrO 4 ® Cr 2 O 3 + N 2 +H 2 O + NH 3

Решение

2 (NH 4) 2 CrO 4 = Cr 2 O 3 + N 2 +5 H 2 O + 2 NH 3

Cr VI + 3 e - = Cr III 2

2N - III - 6 e - = N 2 0 1

Для реакций дисмутации (диспропорционирования , самоокисления - самовосстановления), в которых атомы одного и того же элемента в реагенте окисляются и восстанавливаются, дополнительные множители проставляют вначале в правую часть уравнения, а затем находят коэффициент для реагента.

Пример 6 . Подберите коэффициенты в уравнении реакции дисмутации

H 2 O 2 ® H 2 O + O 2

Решение

2 H 2 O 2 = 2 H 2 O + O 2

O - I + e - = O - II 2

2O - I - 2 e - = O 2 0 1

Для реакции конмутации (синпропорционирования ), в которых атомы одного и того же элемента разных реагентов в результате их окисления и восстановления получают одинаковую степень окисления, дополнительные множители проставляют вначале в левую часть уравнения.

Пример 7. Подберите коэффициенты в уравнении реакции конмутации :

H 2 S + SO 2 = S + H 2 O

Решение

2 H 2 S + SO 2 = 3 S + 2H 2 O

S - II - 2 e - = S 0 2

S IV + 4 e - = S 0 1

Для подбора коэффициентов в уравнениях окислительно-восстановительных реакций, протекающих в водном растворе при участии ио нов, используют метод электронно-ионного баланса. Метод подбора коэффициентов с помощью электронно-ионного баланса складывается из следующих этапов:

а) записывают формулы реагентов данной окислительно-восстановительной реакции

K 2 Cr 2 O 7 + H 2 SO 4 + H 2 S

и устанавливают химическую функцию каждого из них (здесь K 2 Cr 2 O 7 - окислитель, H 2 SO 4 - кислотная среда реакции, H 2 S - восстановитель);

б) записывают (на следующей строчке) формулы реагентов в ионном виде, указывая только те ионы (для сильных электролитов), молекулы (для слабых электролитов и газов) и формульные единицы (для твердых веществ), которые примут участие в реакции в качестве окислителя (Cr 2 O 7 2 - ), среды (Н + - точнее, катиона оксония H 3 O + ) и восстановителя (H 2 S ):

Cr 2 O 7 2 - + H + + H 2 S

в) определяют восстановленную формулу окислителя и окисленную форму восстановителя, что должно быть известно или задано (так, здесь дихромат-ион переходит катионы хрома(III ), а сероводород - в серу); эти данные записывают на следующих двух строчках, составляют электронно-ионные уравнения полуреакций восстановления и окисления и подбирают дополнительные множители для уравнений полуреакций :

полуреакция восстановления Cr 2 O 7 2 - + 14 H + + 6 e - = 2 Cr 3+ + 7 H 2 O 1

полуреакция окисления H 2 S - 2 e - = S (т) + 2 H + 3

г) составляют, суммируя уравнения полуреакций , ионное уравнение данной реакции, т.е. дополняют запись (б):

Cr 2 O 7 2 - + 8 H + + 3 H 2 S = 2 Cr 3+ + 7 H 2 O + 3 S ( т )

д ) на основе ионного уравнения составляют молекулярное уравнение данной реакции, т.е. дополняют запись (а), причем формулы катионов и анионов, отсутствующие в ионном уравнении, группируют в формулы дополнительных продуктов (K 2 SO 4 ):

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3H 2 S = Cr 2 (SO 4) 3 + 7H 2 O + 3S ( т ) + K 2 SO 4

е) проводят проверку подобранных коэффициентов по числу атомов элементов в левой и правой частях уравнения (обычно достаточно только проверить число атомов кислорода).

Окисленная и восстановленная формы окислителя и восстановителя часто отличаются по содержанию кислорода (сравните Cr 2 O 7 2 - и Cr 3+ ). Поэтому при составлении уравнений полуреакций методом электронно-ионного баланса в них включают пары Н + / Н 2 О (для кислотной среды) и ОН - / Н 2 О (для щелочной среды). Если при переходе от одной формы к другой исходная форма (обычно - окисленная) теряет свои оксид-ионы (ниже показаны в квадратных скобках), то последние, так как они не существуют в свободном виде, должны быть в кислотной среде соединены с катионами водорода, а в щелочной среде - с молекулами воды, что приводит к образованию молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде ):

кислотная среда[ O 2 - ] + 2 H + = H 2 O

щелочная среда[ O 2 - ] + H 2 О = 2 ОН -

Недостаток оксид-ионов в исходной форме (чаще - в восстановленной) по сравнению с конечной формой компенсируется добавлением молекул воды (в кислотной среде) или гидроксид-ионов (в щелочной среде):

кислотная среда H 2 O = [ O 2 - ] + 2 H +

щелочная среда2 ОН - = [ O 2 - ] + H 2 О

Пример 8. Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

® MnSO 4 + H 2 O + Na 2 SO 4 + ¼

Решение

2 KMnO 4 + 3 H 2 SO 4 + 5 Na 2 SO 3 =

2 MnSO 4 + 3 H 2 O + 5 Na 2 SO 4 + + K 2 SO 4

2 MnO 4 - + 6 H + + 5 SO 3 2 - = 2 Mn 2+ + 3 H 2 O + 5 SO 4 2 -

MnO 4 - + 8 H + + 5 e - = Mn 2+ + 4 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 5

Пример 9 . Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

Na 2 SO 3 + KOH + KMnO 4 ® Na 2 SO 4 + H 2 O + K 2 MnO 4

Решение

Na 2 SO 3 + 2 KOH + 2 KMnO 4 = Na 2 SO 4 + H 2 O + 2 K 2 MnO 4

SO 3 2 - + 2 OH - + 2 MnO 4 - = SO 4 2 - + H 2 O + 2 MnO 4 2 -

MnO 4 - + 1 e - = MnO 4 2 - 2

SO 3 2 - + 2 OH - - 2 e - = SO 4 2 - + H 2 О 1

Если перманганат-ион используется в качестве окислителя в слабокислотной среде, то уравнение полуреакции восстановления:

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O

а если в слабощелочной среде, то

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

Часто слабокислую и слабощелочную среду условно называют нейтральной, при этом в уравнения полуреакций слева вводят только молекулы воды. В этом случае при составлении уравнения следует (после подбора дополнительных множителей) записать дополнительное уравнение, отражающее образование воды из ионов Н + и ОН - .

Пример 10 . Подберите коэффициенты в уравнении реакции, протекающей в нейтральной среде:

KMnO 4 + H 2 О + Na 2 SO 3 ® Mn О 2( т ) + Na 2 SO 4 ¼

Решение

2 KMnO 4 + H 2 О + 3 Na 2 SO 3 = 2 Mn О 2( т ) + 3 Na 2 SO 4 + 2 КОН

MnO 4 - + H 2 О + 3 SO 3 2 - = 2 Mn О 2( т ) + 3 SO 4 2 - + 2 ОН -

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H +

8ОН - + 6 Н + = 6 Н 2 О + 2 ОН -

Таким образом, если реакцию из примера 10 проводят простым сливанием водных растворов перманганата калия и сульфита натрия, то она протекает в условно нейтральной (а в действительности, в слабощелочной) среде из-за образования гидроксида калия. Если же раствор перманганата калия немного подкислить, то реакция будет протекать в слабокислотной (условно нейтральной) среде.

Пример 11 . Подберите коэффициенты в уравнении реакции, протекающей в слабокислотной среде:

KMnO 4 + H 2 SO 4 + Na 2 SO 3 ® Mn О 2( т ) + H 2 O + Na 2 SO 4 + ¼

Решение

2KMnO 4 + H 2 SO 4 + 3Na 2 SO 3 = 2MnО 2( т ) + H 2 O + 3Na 2 SO 4 + K 2 SO 4

2 MnO 4 - + 2 H + + 3 SO 3 2 - = 2 Mn О 2( т ) + Н 2 О + 3 SO 4 2 -

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 3

Формы существования окислителей и восстановителей до и после реакции, т.е. их окисленные и восстановленные формы, называют окислительно-восстановительными парами . Так, из химической практики известно (и это требуется запомнить), что перманганат-ион в кислотной среде образует катион марганца(II ) (пара MnO 4 - + H + / Mn 2+ + H 2 O ), в слабощелочной среде - оксид марганца(IV ) (пара MnO 4 - + H + ¤ Mn О 2(т) + H 2 O или MnO 4 - + H 2 О = Mn О 2(т) + ОН - ). Состав окисленных и восстановленных форм определяется, следовательно, химическими свойствами данного элемента в различных степенях окисления, т.е. неодинаковой устойчивостью конкретных форм в различных средах водного раствора. Все использованные в настоящем разделе окислительно-восстановительные пары приведены в задачах 2.15 и 2.16.










Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Рудзитис Г.Е, Фельдман Ф.Г. Химия: учебник для 9 класса общеобразовательных учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – 12-е изд. – М.: Просвещение, ОАО “Московские учебники”, 2009. – 191 с

Цель: сформировать представление учащихся о окислительно-восстановительных процессах, их механизме

Ожидаемые результаты

Предметные:

В ходе работы учащиеся

приобретут

  • способность анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды
  • умение устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, объяснять причины многообразия веществ, зависимость свойств веществ от их строения;

овладеют научным подходом к составлению уравнению окислительно-восстановительных реакций

Метапредметные

В ходе работы учащиеся смогут

  • определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  • создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
  • применять экологическое мышление в познавательной, коммуникативной, социальной практике и профессиональной ориентации

Личностные

В ходе работы учащиеся приобретут

  • основы экологической культуры соответствующей современному уровню экологического мышления, опыт экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

2.1. Химическая реакция. Условия и признакипротекания химических реакций. Химическиеуравнения.

2.2. Классификация химических реакций по изменению степеней окисления химических элементов

2.6. Окислительно-восстановительные реакции. Окислитель и восстановитель.

Умения и виды деятельности, проверяемые КИМ ГИА

Знать/понимать

  • химическую символику: формулы химических веществ, уравнения химических реакций
  • важнейшие химические понятия:, степень окисления, окислитель и восстановитель, окисление и восстановление, основные типы реакций в неорганической химии

1.2.1. характерные признаки важнейших химических понятий

1.2.2. о существовании взаимосвязи между важнейшими химическими понятиями

Составлять

2.5.3. уравнения химических реакций.

Форма проведения: урок с использованием ИКТ, включением парных, индивидуальных форм организации учебно-познавательной деятельности учащихся.

Продолжительность учебного занятия: 45 минут.

Использование педагогических технологий: метод эвристического обучения, обучение в сотрудничестве

Ход урока

I. Проблематизация, актуализация, мотивация – 10 мин.

Фронтальная беседа

  • Что такое атомы и ионы.
  • Чем они отличаются?
  • Что такое электроны?
  • Что такое степень окисления?
  • Как рассчитывается степень окисления?

На доске учащимся предлагается расставить степени окисления в следующих веществах:

Сl 2 O 7 , SO 3 , H 3 PO 4 , P 2 O 5 , Na 2 CO 3 , CuSO 4 , Cl 2 , HClO 4 , K 2 Cr 2 O 7 , Cr 2 (SO 4) 3 , Al(NO 3) 3, CaSO 4 ,

NaMnO 4 , MnCl 2 , HNO 3 , N 2 , N 2 O, HNO 2 , H 2 S, Ca 3 (PO 4) 2

II. Изучение нового материала. Объяснение учителя. 15 мин.

Основные понятия (слайд 2):

Окислительно-восстановительные реакции – это реакции, в которых изменяются степени окисления двух элементов, один из которых является восстановителем, а другой – окислителем

Восстановитель – это тот элемент, который в процессе реакции отдает электроны, и сам при этом окисляется

Окислитель – это тот элемент, который в процессе реакции принимает электроны, и сам при этом восстанавливается

Правила составления окислительно-восстановительных уравнений (слайд 3)

1. Запишем уравнение реакции (слайд 4).

CuS+HNO 3 ->Cu(NO 3) 2 + S + NO+H 2 O

2. Расставим степени окисления всех элементов

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

3. Выделим элементы, которые поменяли степени окисления

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

Видим, что в результате реакции поменяли степени окисления два элемента –

  • сера (S) поменяла полностью (от – 2 до 0 )
  • aзот (N) поменял частично (от +5 до +2 поменял), часть осталась +5

4. Выпишем те элементы, которые поменяли степени окисления и покажем переход электронов (слайд 5.)

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + S 0 + N +2 O+H 2 O

S -2 - 2e S 0

5. Составим электронный баланс, найдем коэффициенты

6. Подставим в уравнение коэффициенты, найденные в балансе (коэффициенты ставятся у веществ, элементы в которых поменяли степень окисления) (слайд 6).

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + 3 S 0 + 2 N +2 O+H 2 O

7. Доставим недостающие коэффициенты методом уравнивания

3CuS -2 +8HN +5 O 3 -> 3Cu(N +5 O 3) 2 + 3S 0 + 2N +2 O+4H 2 O

8. По кислороду проверим правильность составления уравнения (слайд 7).

До реакции кислорода 24 атома = После реакции кислорода 24 атома

9. Выдели окислитель и восстановитель и процессы – окисления и восстановления

S -2 (в CuS) является восстановителем, т.к. отдает электроны

N +5 (в HNO 3) является окислителем, т.к. отдает электроны

III. Закрепление изученного материала (25 мин)

Учащимся предлагается выполнить задание в парах.

Задание 1. 10 мин. (слайд 8)

Учащимся предлагается составить уравнение реакции в соответствии с алгоритмом.

Mg+H 2 SO 4 -> MgSO 4 + H 2 S + H 2 O

Проверка задания

4Mg 0 +5H 2 +1 S +6 O 4 -2 -> 4Mg +2 S +6 O 4 -2 + H 2 +1 S -2 + 4H 2 +1 O -2

Переход е Число электронов НОК Коэффициенты
2 4
1

Задание 2. 15 мин. (слайды 9, 10)

Учащимся предлагается выполнить тест (в парах). Задания теста проверяются и разбираются на доске.

Вопрос № 1

Какое уравнение соответствует окислительно-восстановительной реакции?

  1. CaCO 3 = CaO + CO 2
  2. BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl
  3. Zn + H 2 SO 4 = ZnSO 4 + H 2
  4. Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

Вопрос № 2

В уравнении реакции 2Al + 3Br 2 =2AlBr 3 коэффициент перед формулой восстановителя равен

Вопрос № 3

В уравнении реакции 5Сa + 12HNO 3 = 5Ca(NO 3) 2 + N 2 + 6H 2 O окислителем является

  1. Ca(NO 3) 2
  2. HNO 3
  3. H 2 O

Вопрос № 4

Какая из предложенных схем будет соответствовать восстановителю

  1. S 0 > S -2
  2. S +4 -> S +6
  3. S -2 > S -2
  4. S +6 -> S +4

Вопрос № 5

В уравнении реакции 2SO 2 + O 2 -> 2 SO 3 сера

  1. окисляется
  2. восстанавливается
  3. ни окисляется, ни восстанавливается
  4. и окисляется, и восстанавливается

Вопрос № 6

Какой элемент является восстановителем в уравнении реакции

2KClO 3 -> 2KCl + 3O 2

  1. калий
  2. кислород
  3. водород

Вопрос № 7

Схема Br -1 -> Br +5 соответствует элементу

  1. окислителю
  2. восстановителю
  3. и окислителю, и восстановителю

Вопрос № 8

Соляная кислота является восстановителем в реакции

  1. PbO 2 + 4HCl = PbCl 2 + Cl 2 + 2H 2 O
  2. Zn + 2HCl = ZnCl 2 + H 2
  3. PbО + 2HCl = PbCl 2 + H 2 О
  4. Na 2 CO 3 + 2HCl = 2NaCl+ CO 2 + H 2 O

Ответы на вопросы теста .

номер вопроса 1 2 3 4 5 6 7 8
ответ 3 1 3 2 1 3 2 1

Домашнее задание: параграф 5 упр. 6,7,8 стр. 22 (учебник).

9.1. Какие бывают химические реакции

Вспомним, что химическими реакциями мы называем любые химические явления природы. При химической реакции происходит разрыв одних и образование других химических связей. В результате реакции из одних химических веществ получаются другие вещества (см. гл. 1).

Выполняя домашнее задание к § 2.5, вы познакомились с традиционным выделением из всего множества химических превращений реакций четырех основных типов, тогда же вы предложили и их названия: реакции соединения, разложения, замещения и обмена.

Примеры реакций соединения:

C + O 2 = CO 2 ; (1)
Na 2 O + CO 2 = Na 2 CO 3 ; (2)
NH 3 + CO 2 + H 2 O = NH 4 HCO 3 . (3)

Примеры реакций разложения:

2Ag 2 O 4Ag + O 2­ ; (4)
CaCO 3 CaO + CO 2­ ; (5)
(NH 4) 2 Cr 2 O 7 N 2­ + Cr 2 O 3 + 4H 2 O­ . (6)

Примеры реакций замещения:

CuSO 4 + Fe = FeSO 4 + Cu ; (7)
2NaI + Cl 2 = 2NaCl + I 2 ; (8)
CaCO 3 + SiO 2 = CaSiO 3 + CO 2­ . (9)

Реакции обмена – химические реакции, в которых исходные вещества как бы обмениваются своими составными частями.

Примеры реакций обмена:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 + 2H 2 O; (10)
HCl + KNO 2 = KCl + HNO 2 ; (11)
AgNO 3 + NaCl = AgCl + NaNO 3 . (12)

Традиционная классификация химических реакций не охватывает все их разнообразие – кроме реакций четырех основных типов существует еще и множество более сложных реакций.
Выделение двух других типов химических реакций основано на участии в них двух важнейших нехимических частиц: электрона и протона.
При протекании некоторых реакций происходит полная или частичная передача электронов от одних атомов к другим. При этом степени окисления атомов элементов, входящих в состав исходных веществ, изменяются; из приведенных примеров это реакции 1, 4, 6, 7 и 8. Эти реакции называются окислительно-восстановительными .

В другой группе реакций от одной реагирующей частицы к другой переходит ион водорода (Н +), то есть протон. Такие реакции называют кислотно-основными реакциями или реакциями с передачей протона .

Среди приведенных примеров такими реакциями являются реакции 3, 10 и 11. По аналогии с этими реакциями окислительно-восстановительные реакции иногда называют реакциями с передачей электрона . С ОВР вы познакомитесь в § 2, а с КОР – в следующих главах.

РЕАКЦИИ СОЕДИНЕНИЯ, РЕАКЦИИ РАЗЛОЖЕНИЯ, РЕАКЦИИ ЗАМЕЩЕНИЯ, РЕАКЦИИ ОБМЕНА, ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ, КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ.
Составьте уравнения реакций, соответствующих следующим схемам:
а) HgO Hg + O 2 (t ); б) Li 2 O + SO 2 Li 2 SO 3 ; в) Cu(OH) 2 CuO + H 2 O (t );
г) Al + I 2 AlI 3 ; д) CuCl 2 + Fe FeCl 2 + Cu; е) Mg + H 3 PO 4 Мg 3 (PO 4) 2 + H 2 ;
ж) Al + O 2 Al 2 O 3 (t ); и) KClO 3 + P P 2 O 5 + KCl (t ); к) CuSO 4 + Al Al 2 (SO 4) 3 + Cu;
л) Fe + Cl 2 FeCl 3 (t ); м) NH 3 + O 2 N 2 + H 2 O (t ); н) H 2 SO 4 + CuO CuSO 4 + H 2 O.
Укажите традиционный тип реакции. Отметьте окислительно-восстановительные и кислотно-основные реакции. В окислительно-восстановительных реакциях укажите, атомы каких элементов меняют свои степени окисления.

9.2. Окислительно-восстановительные реакции

Рассмотрим окислительно-восстановительную реакцию, протекающую в доменных печах при промышленном получении железа (точнее, чугуна) из железной руды:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

Определим степени окисления атомов, входящих в состав как исходных веществ, так и продуктов реакции

Fe 2 O 3 + = 2Fe +

Как видите, степень окисления атомов углерода в результате реакции увеличилась, степень окисления атомов железа уменьшилась, а степень окисления атомов кислорода осталась неизменной. Следовательно, атомы углерода в этой реакции подверглись окислению, то есть потеряли электроны (окислились ), а атомы железа – восстановлению, то есть присоединили электроны (восстановились ) (см. § 7.16). Для характеристики ОВР используют понятия окислитель и восстановитель .

Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).
В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.
Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO 3 (N +V), KMnO 4 (Mn +VII), CrO 3 (Cr +VI), KClO 3 (Cl +V), KClO 4 (Cl +VII) и др.
Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H 2 S и сульфиды (S –II), SO 2 и сульфиты (S +IV), йодиды (I –I), CO (C +II), NH 3 (N –III) и др.
В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:
SO 2 + Cl 2 = S + Cl 2 O 2 (SO 2 – сильный восстановитель);
SO 2 + C = S + CO 2 (t) (SO 2 – слабый окислитель);
C + O 2 = CO 2 (t) (C – восстановитель);
C + 2Ca = Ca 2 C (t) (С – окислитель).
Вернемся к реакции, разобранной нами в начале этого параграфа.

Fe 2 O 3 + = 2Fe +

Обратите внимание, что в результате реакции атомы-окислители (Fe +III) превратились в атомы-восстановители (Fe 0), а атомы-восстановители (C +II) превратились в атомы-окислители (C +IV). Но CO 2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.
Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:
а) метод электронного баланса и
б) метод электронно-ионного баланса .
Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.
Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.
Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.
Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl 2 FeCl 3 .

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями :
Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I .

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I
2Fe – 6e – = 2Fe +III ,
3Cl 2 + 6e – = 6Cl –I .

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:
2Fe + 3Cl 2 = 2FeCl 3 .

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

+V –I
P 4 + Cl 2 PCl 5 .

Молекулы белого фосфора отдают электроны (окисляются), а молекулы хлора их принимают (восстанавливаются):

P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
1
10
2
20
P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
P 4 – 20e – = 4P +V
10Cl 2 + 20e – = 20Cl –I

Полученные первоначально множители (2 и 20) имели общий делитель, на который (как будущие коэффициенты в уравнении реакции) и были разделены. Уравнение реакции:

P 4 + 10Cl 2 = 4PCl 5 .

Пример 3. Составим уравнение реакции, протекающей при обжиге сульфида железа(II) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

В этом случае окисляются и атомы железа(II), и атомы серы(– II). В состав сульфида железа(II) атомы этих элементов входят в отношении 1:1 (см. индексы в простейшей формуле).
Электронный баланс:

4 Fe +II – e – = Fe +III
S –II – 6e – = S +IV
Всего отдают 7е
7 O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Пример 4 . Составим уравнение реакции, протекающей при обжиге дисульфида железа(II) (пирита) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

Как и в предыдущем примере, здесь тоже окисляются и атомы железа(II), и атомы серы, но со степенью окисления – I. В состав пирита атомы этих элементов входят в отношении 1:2 (см. индексы в простейшей формуле). Именно в этом отношении атомы железа и серы вступают в реакцию, что и учитывается при составлении электронного баланса:

Fe +III – e – = Fe +III
2S –I – 10e – = 2S +IV
Всего отдают 11е
O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Встречаются и более сложные случаи ОВР, с некоторыми из них вы познакомитесь, выполняя домашнее задание.

АТОМ-ОКИСЛИТЕЛЬ, АТОМ-ВОССТАНОВИТЕЛЬ, ВЕЩЕСТВО-ОКИСЛИТЕЛЬ, ВЕЩЕСТВО-ВОССТАНОВИТЕЛЬ, МЕТОД ЭЛЕКТРОННОГО БАЛАНСА, ЭЛЕКТРОННЫЕ УРАВНЕНИЯ.
1.Составьте электронный баланс к каждому уравнению ОВР, приведенному в тексте § 1 этой главы.
2.Составьте уравнения ОВР, обнаруженных вами при выполнении задания к § 1 этой главы. На этот раз для расстановки коэффициентов используйте метод электронного баланса. 3.Используя метод электронного баланса, составьте уравнения реакций, соответствующие следующим схемам: а) Na + I 2 NaI;
б) Na + O 2 Na 2 O 2 ;
в) Na 2 O 2 + Na Na 2 O;
г) Al + Br 2 AlBr 3 ;
д) Fe + O 2 Fe 3 O 4 (t );
е) Fe 3 O 4 + H 2 FeO + H 2 O (t );
ж) FeO + O 2 Fe 2 O 3 (t );
и) Fe 2 O 3 + CO Fe + CO 2 (t );
к) Cr + O 2 Cr 2 O 3 (t );
л) CrO 3 + NH 3 Cr 2 O 3 + H 2 O + N 2 (t );
м) Mn 2 O 7 + NH 3 MnO 2 + N 2 + H 2 O;
н) MnO 2 + H 2 Mn + H 2 O (t );
п) MnS + O 2 MnO 2 + SO 2 (t )
р) PbO 2 + CO Pb + CO 2 (t );
с) Cu 2 O + Cu 2 S Cu + SO 2 (t );
т) CuS + O 2 Cu 2 O +SO 2 (t );
у) Pb 3 O 4 + H 2 Pb + H 2 O (t ).

9.3. Экзотермические реакции. Энтальпия

Почему происходят химические реакции?
Для ответа на этот вопрос вспомним, почему отдельные атомы объединяются в молекулы, почему из изолированных ионов образуется ионный кристалл, почему при образовании электронной оболочки атома действует принцип наименьшей энергии. Ответ на все эти вопросы один и тот же: потому, что это энергетически выгодно. Это значит, что при протекании таких процессов выделяется энергия. Казалось бы, что и химические реакции должны протекать по этой же причине. Действительно, можно провести множество реакций, при протекании которых выделяется энергия. Энергия выделяется, как правило, в виде теплоты.

Если при экзотермической реакции теплота не успевает отводиться, то реакционная система нагревается.
Например, в реакции горения метана

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)

выделяется столько теплоты, что метан используется как топливо.
Тот факт, что в этой реакции выделяется теплота, можно отразить в уравнении реакции:

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.

Это так называемое термохимическое уравнение . Здесь символ "+Q " означает, что при сжигании метана выделяется теплота. Эта теплота называется тепловым эффектом реакции .
Откуда же берется выделяющаяся теплота?
Вы знаете, что при химических реакциях рвутся и образуются химические связи. В данном случае рвутся связи между атомами углерода и водорода в молекулах СН 4 , а также между атомами кислорода в молекулах О 2 . При этом образуются новые связи: между атомами углерода и кислорода в молекулах СО 2 и между атомами кислорода и водорода в молекулах Н 2 О. Для разрыва связей нужно затратить энергию (см. "энергия связи" , "энергия атомизации"), а при образовании связей энергия выделяется. Очевидно, что, если "новые" связи более прочные, чем "старые" , то энергии выделится больше, чем поглотится. Разность между выделившейся и поглощенной энергией и составляет тепловой эффект реакции.
Тепловой эффект (количество теплоты) измеряется в килоджоулях, например:

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Такая запись означает, что 484 килоджоуля теплоты выделится, если два моля водорода прореагируют с одним молем кислорода и при этом образуется два моля газообразной воды (водяного пара).

Таким образом, в термохимических уравнениях коэффициенты численно равны количествам вещества реагентов и продуктов реакции .

От чего зависит тепловой эффект каждой конкретной реакции?
Тепловой эффект реакции зависит
а) от агрегатных состояний исходных веществ и продуктов реакции,
б) от температуры и
в) от того, происходит ли химическое превращение при постоянном объеме или при постоянном давлении.
Зависимость теплового эффекта реакции от агрегатного состояния веществ связана с тем, что процессы перехода из одного агрегатного состояния в другое (как и некоторые другие физические процессы) сопровождаются выделением или поглощением теплоты. Это также может быть выражено термохимическим уравнением. Пример – термохимическое уравнение конденсации водяного пара:

Н 2 О (г) = Н 2 О (ж) + Q.

В термохимических уравнениях, а при необходимости и в обычных химических уравнениях, агрегатные состояния веществ указываются с помощью буквенных индексов:
(г) – газ,
(ж) – жидкость,
(т) или (кр) – твердое или кристаллическое вещество.
Зависимость теплового эффекта от температуры связана с различиями в теплоемкостях исходных веществ и продуктов реакции.
Так как в результате экзотермической реакции при постоянном давлении всегда увеличивается объем системы, то часть энергии уходит на совершение работы по увеличению объема, и выделяющаяся теплота будет меньше, чем в случае протекания той же реакции при постоянном объеме.
Тепловые эффекты реакций обычно рассчитывают для реакций, протекающих при постоянном объеме при 25 ° С и обозначают символом Q o .
Если энергия выделяется только в виде теплоты, а химическая реакция протекает при постоянном объеме, то тепловой эффект реакции (Q V ) равен изменению внутренней энергии (D U ) веществ-участников реакции, но с противоположным знаком:

Q V = – U .

Под внутренней энергией тела понимают суммарную энергию межмолекулярных взаимодействий, химических связей, энергию ионизации всех электронов, энергию связей нуклонов в ядрах и все прочие известные и неизвестные виды энергии, " запасенные" этим телом. Знак " – " обусловлен тем, что при выделении теплоты внутренняя энергия уменьшается. То есть

U = – Q V .

Если же реакция протекает при постоянном давлении, то объем системы может изменяться. На совершение работы по увеличению объема также уходит часть внутренней энергии. В этом случае

U = – (Q P + A ) = –(Q P + P V ),

где Q p – тепловой эффект реакции, протекающей при постоянном давлении. Отсюда

Q P = – U – P V .

Величина, равная U + P V получила название изменение энтальпии и обозначается D H .

H = U + P V .

Следовательно

Q P = – H .

Таким образом, при выделении теплоты энтальпия системы уменьшается. Отсюда старое название этой величины: " теплосодержание" .
В отличие от теплового эффекта, изменение энтальпии характеризует реакцию независимо от того, протекает она при постоянном объеме или постоянном давлении. Термохимические уравнения, записанные с использованием изменения энтальпии, называются термохимическими уравнениями в термодинамической форме . При этом приводится значение изменения энтальпии в стандартных условиях (25 °С, 101,3 кПа), обозначаемое H о . Например:
2Н 2(г) + О 2(г) = 2Н 2 О (г) H о = – 484 кДж;
CaO (кр) + H 2 O (ж) = Сa(OH) 2(кр) H о = – 65 кДж.

Зависимость количества теплоты, выделяющейся в реакции (Q ) от теплового эффекта реакции (Q o) и количества вещества (n Б) одного из участников реакции (вещества Б – исходного вещества или продукта реакции) выражается уравнением:

Здесь Б – количество вещества Б, задаваемое коэффициентом перед формулой вещества Б в термохимическом уравнении.

Задача

Определите количество вещества водорода, сгоревшего в кислороде, если при этом выделилось 1694 кДж теплоты.

Решение

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Q = 1694 кДж, 6.Тепловой эффект реакции взаимодействия кристаллического алюминия с газообразным хлором равен 1408 кДж. Запишите термохимическое уравнение этой реакции и определите массу алюминия, необходимого для получения 2816 кДж теплоты с использованием этой реакции.
7.Определите количество теплоты, выделяющейся при сгорании на воздухе 1 кг угля, содержащего 90 % графита, если тепловой эффект реакции горения графита в кислороде равна 394 кДж.

9.4. Эндотермические реакции. Энтропия

Кроме экзотермических реакций возможны реакции, при протекании которых теплота поглощается, и, если ее не подводить, то реакционная система охлаждается. Такие реакции называют эндотермическими .

Тепловой эффект таких реакций отрицательный. Например:
CaCO 3(кр) = CaO (кр) +CO 2(г) – Q,
2HgO (кр) = 2Hg (ж) + O 2(г) – Q,
2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.

Таким образом, энергия, выделяющаяся при образовании связей в продуктах этих и им подобных реакций, меньше, чем энергия, необходимая для разрыва связей в исходных веществах.
Что же является причиной протекания таких реакций, ведь энергетически они невыгодны?
Раз такие реакции возможны, значит существует какой-то неизвестный нам фактор, являющийся причиной их протекания. Попробуем его обнаружить.

Возьмем две колбы и заполним одну из них азотом (бесцветный газ), а другую – диоксидом азота (бурый газ) так, чтобы и давление, и температура в колбах были одинаковыми. Известно, что эти вещества между собой не вступают в химическую реакцию. Герметично соединим колбы горлышками и установим их вертикально, так, чтобы колба с более тяжелым диоксидом азота была внизу (рис. 9.1). Через некоторое время мы увидим, что бурый диоксид азота постепенно распространяется в верхнюю колбу, а бесцветный азот проникает в нижнюю. В результате газы смешиваются, и окраска содержимого колб становится одинаковой.
Что же заставляет газы смешиваться?
Хаотическое тепловое движение молекул.
Приведенный опыт показывает, что самопроизвольно, без какого бы то ни было нашего (внешнего) воздействия может протекать процесс, тепловой эффект которого равен нулю. А он действительно равен нулю, потому что химического взаимодействия в данном случае нет (химические связи не рвутся и не образуются), а межмолекулярное взаимодействие в газах ничтожно и практически одинаково.
Наблюдаемое явление представляет собой частный случай проявления всеобщего закона Природы, в соответствии с которым системы, состоящие из большого числа частиц, всегда стремятся к наибольшей неупорядоченности.
Мерой такой неупорядоченности служит физическая величина, называемая энтропией .

Таким образом,

чем БОЛЬШЕ ПОРЯДКА – тем МЕНЬШЕ ЭНТРОПИЯ,
чем МЕНЬШЕ ПОРЯДКА – тем БОЛЬШЕ ЭНТРОПИЯ.

Уравнения связи между энтропией (S ) и другими величинами изучаются в курсах физики и физической химии. Единица измерений энтропии [S ] = 1 Дж/К.
Энтропия возрастает при нагревании вещества и уменьшается при его охлаждении. Особенно сильно она возрастает при переходе вещества из твердого в жидкое и из жидкого в газообразное состояние.
Что же произошло в нашем опыте?
При смешении двух разных газов степень неупорядоченности возросла. Следовательно, возросла энтропия системы. При нулевом тепловом эффекте это и послужило причиной самопроизвольного протекания процесса.
Если теперь мы захотим разделить смешавшиеся газы, то нам придется совершить работу, то есть затратить для этого энергию. Самопроизвольно (за счет теплового движения) смешавшиеся газы никогда не разделятся!
Итак, мы с вами обнаружили два фактора, определяющих возможность протекания многих процессов, в том числе и химических реакций:
1) стремление системы к минимуму энергии (энергетический фактор ) и
2) стремление системы к максимуму энтропии (энтропийный фактор ).
Посмотрим теперь, как влияют на возможность протекания химических реакций различные комбинации этих двух факторов.
1. Если в результате предполагаемой реакции энергия продуктов реакции оказывается меньше, чем энергия исходных веществ, а энтропия больше (" под гору к большему беспорядку"), то такая реакция может протекать и будет экзотермической.
2. Если в результате предполагаемой реакции энергия продуктов реакции оказывается больше, чем энергия исходных веществ, а энтропия меньше (" в гору к большему порядку"), то такая реакция не идет.
3. Если в предполагаемой реакции энергетический и энтропийный факторы действуют в разные стороны (" под гору, но к большему порядку" или " в гору, но к большему беспорядку"), то без специальных расчетов сказать что-либо о возможности протекания такой реакции нельзя (" кто перетянет"). Подумайте, к какому из этих случаев относятся эндотермические реакции.
Возможность протекания химической реакции можно оценить, рассчитав изменение в ходе реакции физической величины, зависящей как от изменения энтальпии, так и от изменения энтропии в этой реакции. Такая физическая величина называется энергией Гиббса (в честь американского физикохимика XIX в. Джозайя Уилларда Гиббса).

G = H – T S

Условие самопроизвольного протекания реакции:

G < 0.

При низких температурах фактором, определяющим возможность протекания реакции в большей степени является энергетический фактор, а при высокой – энтропийный. Из приведенного уравнения, в частности, видно, почему не протекающие при комнатной температуре реакции разложения (энтропия увеличивается) начинают идти при повышенной температуре.

ЭНДОТЕРМИЧЕСКАЯ РЕАКЦИЯ, ЭНТРОПИЯ, ЭНЕРГЕТИЧЕСКИЙ ФАКТОР, ЭНТРОПИЙНЫЙ ФАКТОР, ЭНЕРГИЯ ГИББСА.
1.Приведите примеры известных вам эндотермических процессов.
2.Почему энтропия кристалла хлорида натрия меньше, чем энтропия расплава, полученного из этого кристалла?
3.Тепловой эффект реакции восстановления меди из ее оксида углем

2CuO (кр) + C (графит) = 2Cu (кр) + CO 2(г)

составляет –46 кДж. Запишите термохимическое уравнение и рассчитайте, какую энергию нужно затратить для получения 1 кг меди по такой реакции.
4.При прокаливании карбоната кальция было затрачено 300 кДж теплоты. При этом по реакции

CaCO 3(кр) = CaO (кр) + CO 2(г) – 179кДж

образовалось 24,6 л углекислого газа. Определите, какое количество теплоты было израсходовано бесполезно. Сколько граммов оксида кальция при этом образовалось?
5.При прокаливании нитрата магния образуется оксид магния, газообразный диоксид азота и кислород. Тепловой эффект реакции равен –510 кДж. Составьте термохимическое уравнение и определите, какое количество теплоты поглотилось, если выделилось 4,48 л кислорода. Какова масса разложившегося нитрата магния?

Цель: отработка умений и навыков составления уравнений окислительно-восстановительных процессов с участием органических соединений.

Методы: рассказ, работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

Преподаватель:

Что же представляют собой окислительно – восстановительные реакции с точки зрения понятия «степень окисления химических элементов»? (слайд 2)

/ Окислительно – восстановительные реакции – это такие реакции, в которых одновременно протекают процессы окисления и восстановления и, как правило, изменяются степени окисления элементов./

Рассмотрим процесс на примере взаимодействия уксусного альдегида с концентрированной серной кислотой:

При составлении этого уравнения используется метод электронного баланса. Метод основан на сравнении степеней окисления атомов в исходных веществах и продуктах реакции. Основное требование при составлении уравнений этим методом: число отданных электронов должно быть равно числу принятых электронов.

    Окислительно - восстановительные реакции – это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.

    Окисление – это процесс отдачи электронов, степень окисления при этом повышается.

    Восстановление – это процесс присоединения электронов, степень окисления при этом понижается.

    Атомы, молекулы или ионы, отдающие электроны, окисляются; являются восстановителями.
    Атомы, ионы или молекулы, принимающие электроны, восстанавливаются; являются окислителями.

    Окисление всегда сопровождается восстановлением, восстановление связано с окислением.

    Окислительно – восстановительные реакции – единство двух противоположных процессов: окисления и восстановления.

Самостоятельная работа № 2 по инструктивной карте: методом электронного баланса найдите и поставьте коэффициенты в следующей схеме окислительно –восстановительной реакции:

MnO 2 + H 2 SO 4 → MnSO 4 + O 2 + H 2 O (2MnO 2 + 2H 2 SO 4 → 2MnSO 4 + O 2 +2H 2 O)

Преподаватель:

Однако научиться находить коэффициенты в ОВР еще не значит уметь их составлять. Нужно знать поведение веществ в ОВР, предусматривать ход реакций, определять состав образующихся продуктов в зависимости от условий реакции.

Для того чтобы разобраться, в каких случаях элементы ведут себя как окислители, а в каких – как восстановители, нужно обратиться к периодической системе Д.И.Менделеева. Если речь идет о простых веществах, то восстановительные свойства должны быть присущи тем элементам, которые имеют больший по сравнению с остальными атомный радиус и небольшое (1 - 3) число электронов на внешнем энергетическом уровне. Поэтому они могут сравнительно легко их отдавать. Это в основном металлы. Наиболее сильными восстановительными свойствами из них обладают щелочные и щелочноземельные металлы, расположенные в главных подгруппах I и II групп (например, натрий, калий, кальций и др.).

Наиболее типичные неметаллы, имеющие близкую к завершению структуру внешнего электронного слоя и значительно меньший по сравнению с металлами того же периода атомный радиус, довольно легко принимают электроны и ведут себя в окислительно-восстановительных реакциях как окислители. Наиболее сильными окислителями являются легкие элементы главных подгрупп VI – VII групп, например фтор, хлор, бром, кислород, сера и др.

Вместе с тем надо помнить, что деление простых веществ на окислители и восстановители так же относительно, как и деление на металлы и неметаллы. Если неметаллы попадают в среду, где присутствует более сильный окислитель, то они могут проявлять восстановительные свойства. Элементы в разных степенях окисления могут вести себя по-разному.

Если элемент имеет свою высшую степень окисления, то он может быть только окислителем. Например, в HN +5 O 3 азот в состоянии + 5 может быть только окислителем и принимать электроны.

Только восстановителем может быть элемент, находящийся в низшей степени окисления. Например, в N -3 Н 3 азот в состоянии -3 может отдавать электроны, т.е. является восстановителем.

Элементы в промежуточных положительных степенях окисления могут, как отдавать, так и принимать электроны и, следовательно, способны вести себя как окислители или восстановители в зависимости от условий. Например, N +3 , S +4 . Попадая в среду с сильным окислителем, ведут себя как восстановители. И, наоборот, в восстановительной среде они ведут себя как окислители.

По окислительно – восстановительным свойствам вещества можно разделить на три группы:

    окислители

    восстановители

    окислители - восстановители

Самостоятельная работа № 3 по инструктивной карте: в какой из приведенных схем уравнений реакций MnO 2 проявляет свойства окислителя, а в какой – свойства восстановителя:

    2MnO 2 + O 2 + 4KOH = 2K 2 MnO 4 + 2H 2 O (MnO 2 – восстановитель)

    MnO 2 + 4HCI = MnCI 2 + CI 2 + 2H 2 O (MnO 2 – окислитель)

Важнейшие окислители и продукты их восстановления

1. Серная кислота - Н 2 SO 4 является окислителем

А) Уравнение взаимодействия цинка с разбавленной Н 2 SO 4 (слайд 3)

Какой ион является окислителем в данной реакции? (H +)

Продуктом восстановления металлом, стоящим в ряду напряжения до водорода, является H2.

Б) Рассмотрим другую реакцию – взаимодействие цинка с концентрированной Н 2 SO 4 (слайд 4)

Какие атомы меняют степень окисления? (цинк и сера)

Концентрированная серная кислота (98%) содержит 2% воды, и соль получается в растворе. В реакции участвуют фактически сульфат – ионы. Продуктом восстановления является сероводород.

В зависимости от активности металла продукты восстановления концентрированной Н 2 SO 4 разные: H 2 S, S, SO 2 .

2. Другая кислота – азотная – также окислитель за счет нитрат – иона NO 3 - . Окислительная способность нитрат – иона значительно выше иона H+, и ион водорода не восстанавливается до атома, поэтому при взаимодействии азотной кислоты с металлами, никогда не выделяется водород, а образуются различные соединения азота. Это зависит от концентрации кислоты и активности металла. Разбавленная азотная кислота восстанавливается глубже, чем концентрированная (для одного и того же металла) (слайд 6)

На схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот

Золото и платина не реагируют с HNO3, но эти металлы растворяются в «царской водке» - смеси концентрированных соляной и азотной кислот в соотношении 3: 1.

Au + 3HCI (конц.) + HNO 3 (конц.) = AuCI 3 + NO + 2H 2 O

3. Наиболее сильным окислителем из числа простых веществ является фтор. Но он слишком активен, и его трудно получить в свободном виде. Поэтому в лабораториях в качестве окислителя используют перманганат калия KMnO 4 . Его окислительная способность зависит от концентрации раствора, температуры и среды.

Создание проблемной ситуации: Я готовила к уроку раствор перманганата калия («марганцовка»), пролила стакан с раствором и испачкала свой любимый химический халат. Предложите (проделав лабораторный опыт) вещество, с помощью которого можно очистить халат.

Реакции окисления – восстановления могут протекать в различных средах. В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами: среда влияет на изменение степеней окисления атомов.

Обычно для создания кислотной среды добавляют серную кислоту. Соляную и азотную применяют реже, т.к. первая способна окисляться, а вторая сама является сильным окислителем и может вызвать побочные процессы. Для создания щелочной среды применяют гидроксид калия или натрия, нейтральной – воду.

Лабораторный опыт: (правила ТБ)

В четыре пронумерованные пробирки налито по 1-2 мл разбавленного раствора перманганата калия. В первую пробирку добавьте несколько капель раствора серной кислоты, во вторую – воду, в третью – гидроксид калия, четвертую пробирку оставьте в качестве контрольной. Затем в первые три пробирки прилейте, осторожно взбалтывая, раствор сульфита натрия. Отметьте. Как изменяется окраска раствора в каждой пробирке. (слайды 7, 8)

Результаты лабораторного опыта:

Продукты восстановления KMnO 4 (MnO 4) - :

    в кислой среде – Mn+ 2 (соль), бесцветный раствор;

    в нейтральной среде – MnO 2 , бурый осадок;

    в щелочной среде - MnO 4 2- , раствор зеленого цвета. (слайд 9,)

К схемам реакций:

KMnO 4 + Na 2 SO 3 + H 2 SO 4 → MnSO 4 + Na 2 SO 4 + K 2 SO 4 + H 2 O

KMnO 4 + Na 2 SO 3 + H 2 O → MnO 2 ↓ + Na 2 SO 4 + KOH

KMnO 4 + Na 2 SO 3 + КOH → Na 2 SO 4 + K 2 MnO 4 + H 2 O

Подберите коэффициенты методом электронного баланса. Укажите окислитель и восстановитель (слайд 10)

(Задание разноуровневое: сильные учащиеся записывают продукты реакции самостоятельно)

Вы проделали лабораторный опыт, предложите вещество, с помощью которого можно очистить халат.

Демонстрационный опыт:

Пятна от раствора перманганата калия быстро выводятся раствором пероксида водорода, подкисленным уксусной кислотой:

2KMnO 4 + 9H 2 O2 + 6CH 3 COOH = 2Mn(CH 3 COO) 2 +2CH 3 COOK + 7O 2 + 12H 2 O

Старые пятна перманганата калия содержат оксид марганца (IV), поэтому будет протекать еще одна реакция:

MnO 2 + 3H 2 O 2 + 2CH 3 COOH = Mn(CH 3 COO) 2 + 2O 2 + 4H 2 O (слайд 12)

После выведения пятен кусок ткани необходимо промыть водой.

Преподаватель:

Значение окислительно – восстановительных реакций

Цель: Показать учащимся значение окислительно-восстановительных реакций в химии, технологии, повседневной жизни человека. Методы: работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

В рамках одного урока невозможно рассмотреть все многообразие окислительно-восстановительных реакций. Но их значение в химии, технологии, повседневной жизни человека трудно переоценить. Окислительно-восстановительные реакции лежат в основе получения металлов и сплавов, водорода и галогенов, щелочей и лекарственных препаратов. С окислительно – восстановительными реакциями связано функционирование биологических мембран, многие природные процессы: обмен веществ, брожение, дыхание, фотосинтез. Без понимания сущности и механизмов протекания окислительно-восстановительных реакций невозможно представить работу химических источников тока (аккумуляторов и батареек), получение защитных покрытий, виртуозную обработку металлических поверхностей изделий. Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, перманганат калия, хлор и хлорная, или белильная, известь. Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод.

Работа с презентацией запись в тетрадь.

Реакции, в ходе которых элементы, входящие в состав реагирующих веществ, изменяют степень окисления, называются окислительно – восстановительными (ОВР).

Степень окисления. Для характеристики состояния элементов в соединениях введено понятие степени окисления. Степень окисления (с.о.) – это условный заряд, который приписывается атому в предположении, что все связи в молекуле или ионе предельно поляризованы. Степень окисления элемента в составе молекулы вещества или иона определяется как число электронов, смещенных от атома данного элемента (положительная степень окисления) или к атому данного элемента (отрицательная степень окисления). Для вычисления степени окисления элемента в соединении следует исходить из следующих положений (правил):

1. Степень окисления элементов в простых веществах, в металлах в элементном состоянии, в соединениях с неполярными связями равны нулю. Примерами таких соединений являютсяN 2 0 , Н 2 0 , Сl 2 0 ,I 2 0 , Мg 0 ,Fe 0 и т.д.

2. В сложных веществах отрицательную степень окисления имеют элементы с большей электроотрицательностью.

Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

О -2 ClО -2 Н + Элемент ЭО

В некоторых случаях степень окисления элемента численно совпадает с валентностью (В) элемента в данном соединении, как, например, в НClО 4 .

Приведенные ниже примеры показывают, что степень окисления и валентность элемента могут численно различаться:

N ≡ N В (N)=3; с.о.(N)=0

Н + C -2 О -2 Н +

ЭО (C) = 2,5 В(С) = 4 с.о.(С) = -2

ЭО (О) = 3,5 В(О) = 2 с.о.(О) = -2

ЭО (Н) = 2,1 В(Н) = 1 с.о.(Н) = +1

3. Различают высшую, низшую и промежуточные степени окисления.

Высшая степень окисления – это ее наибольшее положительное значение. Высшая степень окисления, как правило, равна номеру группы (N) периодической системы, в которой элемент находится. Например, для элементов III периода она равна: Na +2 , Mg +2 , AI +3 , Si +4 , P +5 , S +6 , CI +7 . Исключение составляют фтор, кислород, гелий, неон, аргон, а также элементы подгруппы кобальта и никеля: их высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе.

Низшая степень окисления определяется количеством электронов, не достающих до устойчивого состояния атома ns 2 nр 6 . Низшая степень окисления для неметаллов равна (N-8), где N – номер группы периодической системы, в которой элемент находится. Например, для неметаллов III периода она равна: Si -4 , P -3 , S -2 ,CI ˉ. Низшая степень окисления для металлов – это наименьшее ее положительное значение из возможных. Например, марганец имеет следующие степени окисления: Mn +2 , Mn +4 , Mn +6 , Mn +7 ; с.о.=+2 – это низшая степень окисления для марганца.

Все остальные встречающиеся степени окисления элемента называют промежуточными. Например, для серы степень окисления, равная +4, является промежуточной.

4. Ряд элементов проявляют в сложных соединениях постоянную степень окисления:

а) щелочные металлы – (+1);

б) металлы второй группы обеих подгрупп (за исключением Нg) – (+2); ртуть может проявлять степени окисления (+1) и (+2);

в) металлы третьей группы, главной подгруппы – (+3), за исключением Tl, который может проявлять степени окисления (+1) и (+3);

д) H + , кроме гидридов металлов (NaH, CaH 2 и т.д.), где его степень окисления равна (-1);

е) О -2 , за исключением пероксидов элементов (Н 2 О 2 , СаО 2 и т.д.), где степень окисления кислорода равна (-1), надпероксидов элементов

(КО 2 , NaO 2 и т.д.), в которых его степень окисления равна – ½, фторида

кислорода ОF 2 .

5. Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов.

В качестве примера вычислим степень окисления фосфора в ортофосфорной кислоте Н 3 РО 4 . Сумма всех степеней окисления в соединении должна быть равна нулю, поэтому обозначим степень окисления фосфора через Х и, умножив известные степени окисления водорода (+1) и кислорода (-2) на число их атомов в соединении, составим уравнение: (+1)*3+Х+(-2)*4 = 0, из которого Х = +5.

Вычислим степень окисления хрома в дихромат – ионе (Cr 2 О 7) 2- .

Сумма всех степеней окисления в сложном ионе должна быть равна (-2), поэтому обозначим степень окисления хрома через Х, составим уравнение 2Х +(-2)*7 = -2, из которого Х = +6.

Понятие степени окисления для большинства соединений имеет условный характер, т.к. не отражает реальный эффективный заряд атома. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного

1 -1 +2 -1 +3 -1

атома к другому: NaI ,MgCI 2 , AIF 3 . Для соединения с полярной ковалентной связью фактический эффективный заряд меньше степени окисления, однако это понятие весьма широко используется в химии.

Основные положения теории ОВР:

1. Окислением называют процесс отдачи электронов атомом, молекулой или ионом. Частицы, отдающие электроны, называют восстановителями; во время реакции они окисляются, образуя продукт окисления. При этом элементы, участвующие в окислении, повышают свою степень окисления. Например:

AI – 3e -  AI 3+

H 2 – 2e -  2H +

Fe 2+ - e -  Fe 3+

2. Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом. Частицы, присоединяющие электроны, называютокислителями; во время реакции они восстанавливаются, образуя продукт восстановления. При этом элементы, участвующие в восстановлении, понижают свою степень окисления. Например:

S + 2e -  S 2-

CI 2 + 2e -  2 CI ˉ

Fe 3+ + e -  Fe 2+

3.Вещества, содержащие частицы восстановители или окислители, соответственно называют восстановителями или окислителями. Например, FeCI 2 является восстановителем за счет Fe 2+ , а FeCI 3 - окислителем за счет Fe 3+ .

4. Окисление всегда сопровождается восстановлением и, наоборот, восстановление всегда связано с окислением. Таким образом ОВР представляют собой единство двух противоположенных процессов – окисления и восстановления

5. Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

Составление уравнений окислительно-восстановительных реакций. На последнем правиле базируются два метода составления уравнений для ОВР:

1. Метод электронного баланса.

Здесь подсчет числа присоединяемых и теряемых электронов производится на основании значений степеней окисления элементов до и после реакции. Обратимся к простейшему примеру:

Na 0 + Cl  Na + Cl

2Na 0 – eˉ  Na + - окисление

1 Cl 2 + 2eˉ  2 Cl - восстановление

2 Na + Cl 2 = 2Na + + 2Cl

2 Na + Cl 2 = 2NaCl

Данный метод используют в том случае, если реакция протекает не в растворе (в газовой фазе, реакции термического разложения и т.д.).

2. Метод ионно-электронный (метод полуреакций).

Данный метод учитывает среду раствора, дает представление о характере частиц реально существующих и взаимодействующих в растворах. Остановимся на нем более подробно.

Алгоритм подбора коэффициентов ионно-электронным методом:

1. Составить молекулярную схему реакции с указанием исходных веществ и продуктов реакции.

2. Составить полную ионно-молекулярную схему реакции, записывая слабые электролиты, малорастворимые, нерастворимые и газообразные вещества в молекулярном виде, а сильные электролиты – в ионном.

3. Исключив из ионно-молекулярной схемы ионы, не изменяющиеся в результате реакции (без учета их количества), переписать схему в кратком ионно-молекулярном виде.

4. Отметить элементы, изменяющие в результате реакции степень окисления; найти окислитель, восстановитель, продукты восстановления, окисления.

5. Составить схемы полуреакций окисления и восстановления, для этого:

а) указать восстановитель и продукт окисления, окислитель и продукт восстановления;

б) уравнять число атомов каждого элемента в левой и правой частях полуреакций (выполнить баланс по элементам) в последовательности: элемент, изменяющий степень окисления, кислород, другие элементы; при этом следует помнить, что в водных растворах в реакциях могут участвовать молекулы Н 2 О, ионы Н + или ОН – в зависимости от характера среды:

в) уравнять суммарное число зарядов в обеих частях полуреакций; для этого прибавить или отнять в левой части полуреакций необходимое число электронов (баланс по зарядам).

6. Найти наименьшее общее кратное (НОК) для числа отданных и полученных электронов.

7. Найти основные коэффициенты при каждой полуреакции. Для этого полученное в п.6 число (НОК) разделить на число электронов, фигурирующих в данной полуреакции.

8. Умножить полуреакции на полученные основные коэффициенты, сложить их между собой: левую часть с левой, правую – с правой (получить ионно-молекулярное уравнение реакции). При необходимости “привести подобные” ионы с учетом взаимодействия между ионами водорода и гидроксид-ионами: H + +OH ˉ= H 2 O.

9. Расставить коэффициенты в молекулярном уравнении реакции.

10. Провести проверку по частицам, не участвующим в ОВР, исключенным из полной ионно-молекулярной схемы (п.3). При необходимости коэффициенты для них находят подбором.

11. Провести окончательную проверку по кислороду.

1. Кислая среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 SO 4  MnSO 4 + NaNO 3 + H 2 O + K 2 SO 4

Полная ионно-молекулярная схема реакции:

K + +MnO+ Na + +NO+2H + + SO Mn 2+ + SO+ Na + + NO+ H 2 O + 2K + +SO.

Краткая ионно-молекулярная схема реакции:

MnO+NO+2H +  Mn 2+ + NO+ H 2 O

ок-ль в-ль продукт в-ния продукт ок-ия

В ходе реакции степень окисления Mn понижается от +7 до +2 (марганец восстанавливается), следовательно, MnО– окислитель;Mn 2+ - продукт восстановления. Степень окисления азота повышается от +3 до +5 (азот окисляется), следовательно, NO– восстановитель, NO – продукт окисления.

Уравнения полуреакций:

2MnO + 8 H + + 5e - Mn 2+ + 4 H 2 O - процесс восстановления

10 +7 +(-5) = +2

5 NO + H 2 O – 2e - NO + 2 H + - процесс окисления

2MnO+ 16H + + 5NO+ 5H 2 O = 2Mn 2+ +8H 2 O + 5NO + 1OH + (полное ионно-молекулярное уравнение).

В суммарном уравнении исключаем число одинаковых частиц, находящихся как в левой, так и в правой частях равенства (приводим подобные). В данном случае это ионы Н + и Н 2 О.

Краткое ионно-молекулярное уравнение будет иметь вид

2MnO + 6H + + 5NO  2Mn 2+ + 3H 2 O + 5NO.

В молекулярной форме уравнение имеет вид

2KMnO 4 + 5 NaNO 2 + 3 H 2 SO 4 = 2MnSO 4 +5NaNO 3 + 3H 2 O + K 2 SO 4 .

Проверим баланс по частицам, которые не участвовали в ОВР:

K + (2 = 2), Na + (5 = 5), SO(3 = 3). Баланс по кислороду: 30 = 30.

2. Нейтральная среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 O  MnO 2 + NaNO 3 + KOH

Ионно-молекулярная схема реакции:

K + + MnO+ Na + + NO+ H 2 O  MnO 2 + Na + + NO+ K + + OH

Краткая ионно-молекулярная схема:

MnO+ NO+ H 2 O  MnO 2 + NO+ OH -

ок-ль в-ль продукт в-ния продукт ок-ия

Уравнения полуреакций:

2MnO+ 2H 2 O+ 3eˉ MnO 2 +4OH-процесс восстановления

6 -1 +(-3) = -4

3 NO+H 2 O– 2eˉ NO+ 2H + - процесс окисления